DECEMBER, 1917.

THE JOURNAL

OF THE

American Chemical Society

with which has been incorporated the

American Chemical Journal

(Founded by Ira Remsen)

INTERNATIONAL COMMITTEE ON ATOMIC WEIGHTS.

On account of the difficulties of correspondence between its members, due to the war, the International Committee on Atomic Weights has decided to make no full report for 1918. Although a good number of new determinations have been published during the past year, none of them seems to demand any immediate change in the table for 1917. That table, therefore, may stand as official during the year 1918.

F. W. CLARKE, Chairman.

INTERNATIONAL ATOMIC WEIGHTS, 1917.				
Symbol.	Atomic weight.	Symbol.	Atomic weight.	
AluminumAl	27 I	CobaltCo	58.97	
AntimonySb	120.2	ColumbiumCb	93.I	
ArgonA	39.88	GopperCu	63.57	
ArsenicAs	74.96	DysprosiumDy	162.5	
BariumBa	137.37	ErbiumEr	167.7	
BismuthBi	208.0	EuropiumEu	152.0	
BoronB	II .0	FluorineF	19.0	
BromineBr	79.92	GadoliniumGd	157.3	
CadmiumCd	112.40	GalliumGa	69.9	
CaesiumCs	132.81	GermaniumGe	72.5	
CalciumCa	40.07	GlucinumGl	9.I	
CarbonC	12.005	GoldAu	197.2	
CeriumCe	140.25	HeliumHe	4.00	
ChlorineCl	35.46	HolmiumHo	163.5	
ChromiumCr	52.0	HydrogenH	I.008	

CHARLES L. BURDICK AND JAMES H. ELLIS.

Symbol.	Atomic weight.	Symbol.	Atomic weight.
IndiumIn	114.8	RubidiumRb	85.45
IodineI	126.92	RutheniumRu	101.7
IridiumIr	193.1	SamariumSa	150.4
IronFe	55.84	ScandiumSc	44.I
KryptonKr	82.92	SeleniumSe	79.2
LanthanumLa	139.0	SiliconSi	28.3
LeadPb	207.20	SilverAg	107.88
LithiumLi	6.94	SodiumNa	23.00
LuteciumLu	175.0	StrontiumSr	87.63
MagnesiumMg	24.32	SulfurS	32.06
ManganeseMn	54.93	Tantalum	181.5
MercuryHg	200.6	Tellurium	127.5
MolybdenumMo	96.0	TerbiumTb	159.2
NeodymiumNd	144.3	Thallium	204.0
NeonNe	20,2	ThoriumTh	232.4
NickelNi	58,68	Thulium	168.5
Niton (radium emanation)Nt	222.4	TinSn	118.7
NitrogenN	14.01	Titanium	48.I
OsmiumOs	190.9	TungstenW	184.0
OxygenO	16.00	UraniumU	238.2
PalladiumPd	106.7	VanadiumV	51.0
PhosphorusP	31.04	XenonXe	130.2
PlatinumPt	195.2	Ytterbium(Neoytterbium)Yb	173.5
PotassiumK	39.10	YttriumYt	88.7
PraseodymiumPr	140.9	, ZincZn	65.37
RadiumRa	226.0	ZirconiumZr	90.6
RhodiumRh	102.9		

INTERNATIONAL ATOMIC WEIGHTS, 1917 (continued).

[CONTRIBUTIONS FROM THE CHEMICAL LABORATORIES OF THROOP COLLEGE OF TECHNOLOGY, No. 3.]

THE CRYSTAL STRUCTURE OF CHALCOPYRITE DETER-MINED BY X-RAYS.

BY CHARLES L. BURDICK AND JAMES H. ELLIS. Received October 3, 1917.

Introduction.

This investigation of the atomic structure of crystals of chalcopyrite $(CuFeS_2)$ was undertaken, as no study of a complex sulfide by the method of X-rays had previously been carried out. Moreover, comparatively few crystals of the tetragonal system in which chalcopyrite crystallizes, have been examined, the only ones being certain oxides (rutile, anatase, cassiterite, zircon) of the formula MO_2 studied by Vegard¹ and by Williams.² Yet the determination of the structure of crystals belonging to other than the isometric system is likely to throw most light on the funda-

¹ Phil. Mag., 32, 65, 505 (1916).

² Proc. Roy. Soc. London, 93, 418 (1917).